
Problem A

Crashing Robots

In a modernized warehouse, robots are used to fetch the goods. Careful
planning is needed to ensure that the robots reach their destinations with-
out crashing into each other. Of course, all warehouses are rectangular,
and all robots occupy a circular floor space with a diameter of 1 meter.
Assume there are N robots, numbered from 1 through N. You will get to
know the position and orientation of each robot, and all the instructions,
which are carefully (and mindlessly) followed by the robots. Instructions
are processed in the order they come. No two robots move simultane-
ously; a robot always completes its move before the next one starts mov-
ing.

A robot crashes with a wall if it attempts to move outside the area of
the warehouse, and two robots crash with each other if they ever try to
occupy the same spot.

Input specifications

The first line of input is K, the number of test cases. Each test case starts
with one line consisting of two integers, 1 ≤ A, B ≤ 100, giving the size of
the warehouse in meters. A is the length in the EW-direction, and B in the
NS-direction.

The second line contains two integers, 1 ≤ N, M ≤ 100, denoting the
numbers of robots and instructions respectively.

Then follow N lines with two integers, 1 ≤ Xi ≤ A, 1 ≤ Yi ≤ B and
one letter (N, S, E or W), giving the starting position and direction of each
robot, in order from 1 through N. No two robots start at the same position.

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

1 2 3 4 5

1

2

3

4

¹¸

º·6

S

N

W E

¾
µ´
¶³

-
µ´
¶³

Figure 1: The starting positions of the robots in the sample warehouse

1

Finally there are M lines, giving the instructions in sequential order.
An instruction has the following format:

<robot #> <action> <repeat>

Where <action> is one of

• L: turn left 90 degrees,

• R: turn right 90 degrees, or

• F: move forward one meter,

and 1 ≤ <repeat> ≤ 100 is the number of times the robot should perform
this single move.

Output specifications

Output one line for each test case:

• Robot i crashes into the wall, if robot i crashes into a wall. (A
robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.)

• Robot i crashes into robot j, if robots i and j crash, and i is the
moving robot.

• OK, if no crashing occurs.

Only the first crash is to be reported.

Sample input

4

5 4

2 2

1 1 E

5 4 W

1 F 7

2 F 7

5 4

2 4

1 1 E

5 4 W

1 F 3

2 F 1

1 L 1

1 F 3

5 4

2

2 2

1 1 E

5 4 W

1 L 96

1 F 2

5 4

2 3

1 1 E

5 4 W

1 F 4

1 L 1

1 F 20

Output for sample input

Robot 1 crashes into the wall

Robot 1 crashes into robot 2

OK

Robot 1 crashes into robot 2

3

4

Problem B

Funny Games

Nils and Mikael are intergalaxial fighters. Now
they are competing for the planet Tellus. The
size of this small and unimportant planet is
1 < X < 10000 gobs. The problem is that their
pockets only have room for one gob, so they have
to reduce the size of the planet. They have avail-
able 1 ≤ K ≤ 6 FACTOR-weapons characterized
by numbers F1, F2, . . . , Fk, all less than 0.9. As is
commonly known, a FACTOR-weapon will blow
off part of the planet, thus reducing the planet to
a fraction of its size, given by the characteristic.
Thus, with e.g. F1 = 0.5 an application of the first
weapon will half the size of the planet. The fighter who reduces the size to
less than, or equal to, 1 gob can take the planet home with him. They take
turns attacking the planet with any weapon. If Nils starts, who will win
the planet? Assume that both Nils and Mikael are omniscient and always
make a winning move if there is one.

Technical note: To ease the problem of rounding errors, there will be no
edge cases where an infinitesimal perturbation of the input values would
cause a different answer.

Input specifications

The first line of input is N ≤ 100, the number of test cases. Each of the
next N lines consists of X, K and then the K numbers F1, F2, . . . , Fk, having
no more than 6 decimals

Output specifications

For each test case, produce one line of output with the name of the winner
(either Nils or Mikael).

Sample input

4

6 2 0.25 0.5

10 2 0.25 0.5

29.29 4 0.3 0.7 0.43 0.54

29.30 4 0.3 0.7 0.43 0.54

5

Output for sample input

Mikael

Nils

Nils

Mikael

6

Problem C

Nullary Computer

Decimal Nullary
0
1 0
2 00
3 000
4 0000
5 00000
... ...

Brian Huck has invented a new power-
saving computer. With the current CMOS-
based processors, a certain amount of power
is lost each time a bit is changed from 0 to 1
or back. To avoid this problem, Brian’s new
Nullary Core stores only zeros. All numbers
are stored in nullary form, as shown on the
right.

His initial 64-nit model has 26 registers,
each of which may store up to 64 nits, and
any attempt to store more than 64 nits will result in a run time error.
There is also a flag register, which contains either a zero, or nothing. The
instruction set is as follows:

Table 1: NC Instruction Set
Instruction Explanation and how to simulate in C
A Add a zero to the value in register A (similarly for all

uppercase letters).
a++;

a First, empty the flag register. Then, if possible, remove
a zero from register A, and place it in the flag register
(similarly for all lowercase letters)
flag = 0; if(a>0) { flag=1; a--; }

(If the flag register is empty, jump past the matching).
Otherwise, empty the flag register.
while(flag) { flag=0;

) Jump to the matching (.
... }

Apart from instructions, no other characters than whitespace are
allowed in a nullary program.

Sample programs

Brian has provided some programs to illustrate the elegance and simplic-
ity of his computer.

Your task will be to write a sorting program for Brian’s Nullary Core-
based Prototype Computer. The NCPC has limited memory, so your

7

Table 2: Sample NC programs
b(b)a(Ba) Move register A to register B (by first emp-

tying register B, then repeatedly pulling a
single zero from register A and placing it
into B).

XXXa(GIa)i(g(FY

g)y(Gy)f(Zb(z)z

(i(YBi)y(Iy))f)

Zb(zb)z(xz)i)x

Set the flag register if the number of zeros
in register A is prime.

program must be no longer than 5432 instructions. Also, the running time
of your program must be no more than 5 · 106 steps for any possible input,
where a step is considered to be the execution of one instruction.

Important note: You must submit the nullary source code of this
program, and not some Java, C or C++ source code.

Input specifications

The numbers to be sorted will be given in the first 24 registers A-X; the
remaining two registers (Y and Z) will be empty.

Output specifications

The sorted numbers should be in registers A through X, in increasing order.
Register Y and Z should be empty.

Sample input

A 0 J 000 S

B 000000000 K T

C 000000 L U

D 0000 M V

E 00000000 N W

F 0000000 O X 0
G 0000 P Y

H 000000 Q Z

I 000000000 R

8

Output for sample input

A J S 000000
B K T 000000
C L U 0000000
D M V 00000000
E N 0 W 000000000
F O 0 X 000000000
G P 000 Y

H Q 0000 Z

I R 0000

9

10

Problem D

The Embarrassed Cryptographer

The young and very promising cryptogra-
pher Odd Even has implemented the security
module of a large system with thousands of
users, which is now in use in his company.
The cryptographic keys are created from the
product of two primes, and are believed to be
secure because there is no known method for
factoring such a product effectively.

What Odd Even did not think of, was that
both factors in a key should be large, not just
their product. It is now possible that some of
the users of the system have weak keys. In a desperate attempt not to
be fired, Odd Even secretly goes through all the users keys, to check if
they are strong enough. He uses his very poweful Atari, and is especially
careful when checking his boss’ key.

Input specifications

The input consists of no more than 20 test cases. Each test case is a line
with the integers 4 ≤ K ≤ 10100 and 2 ≤ L ≤ 106. K is the key itself, a
product of two primes. L is the wanted minimum size of the factors in the
key. The input set is terminated by a case where K = 0 and L = 0.

Output specifications

For each number K, if one of its factors are strictly less than the required
L, your program should output “BAD p”, where p is the smallest factor in
K. Otherwise, it should output “GOOD”. Cases should be separated by a
line-break.

Sample input

143 10

143 20

667 20

667 30

2573 30

2573 40

0 0

11

Output for sample input

GOOD

BAD 11

GOOD

BAD 23

GOOD

BAD 31

12

Problem E

Electrical Outlets

Roy has just moved into a new apartment.
Well, actually the apartment itself is not
very new, even dating back to the days
before people had electricity in their houses.
Because of this, Roy’s apartment has only one
single wall outlet, so Roy can only power one
of his electrical appliances at a time.

Roy likes to watch TV as he works on his
computer, and to listen to his HiFi system (on
high volume) while he vacuums, so using just the single outlet is not
an option. Actually, he wants to have all his appliances connected to
a powered outlet, all the time. The answer, of course, is power strips,
and Roy has some old ones that he used in his old apartment. However,
that apartment had many more wall outlets, so he is not sure whether his
power strips will provide him with enough outlets now.

Your task is to help Roy compute how many appliances he can provide
with electricity, given a set of power strips. Note that without any power
strips, Roy can power one single appliance through the wall outlet. Also,
remember that a power strip has to be powered itself to be of any use.

Input specifications

Input vill start with a single integer 1 ≤ N ≤ 20, indicating the number
of test cases to follow. Then follow N lines, each describing a test case.
Each test case starts with an integer 1 ≤ K ≤ 10, indicating the number
of power strips in the test case. Then follow, on the same line, K integers
separated by single spaces, O1 O2 . . . OK, where 2 ≤ Oi ≤ 10, indicating
the number of outlets in each power strip.

Output specifications

Output one line per test case, with the maximum number of appliances
that can be powered.

Sample input

3

3 2 3 4

13

10 4 4 4 4 4 4 4 4 4 4

4 10 10 10 10

Output for sample input

7

31

37

14

Problem F

Worst Weather Ever

“Man, this year has the worst weather
ever!”, David said as he sat crouched in
the small cave where we had sought shelter
from yet another sudden rainstorm.

“Nuh-uh!”, Diana immediately replied
in her traditional know-it-all manner.

“Is too!”, David countered cunningly.
Terrific. Not only were we stuck in this

cave, now we would have to listen to those
two nagging for at least an hour. It was time to cut this discussion short.

“Big nuh-uh. In fact, 93 years ago it had already rained five times as
much by this time of year.”

“Duh”, David capitulated, “so it’s the worst weather in 93 years then.”
“Nuh-uh, this is actually the worst weather in 23 years.”, Diana again

broke in.
“Yeah, well, whatever”, David sighed, “Who cares anyway?”.
Well, dear contestants, you care, don’t you?

The Problem

Your task is to, given information about the amount of rain during
different years in the history of the universe, and a series of statements
in the form “Year X had the most rain since year Y”, determine whether
these are true, might be true, or are false. We say that such a statement is
true if:

• The amount of rain during these two years and all years between
them is known.

• It rained at most as much during year X as it did during year Y.

• For every year Z satisfying Y < Z < X, the amount of rain during
year Z was less than the amount of rain during year X.

We say that such a statement might be true if there is an assignment of
amounts of rain to years for which there is no information, such that the
statement becomes true. We say that the statement is false otherwise.

15

Input specifications

The input will consist of several test cases, each consisting of two parts.
The first part begins with an integer 1 ≤ n ≤ 50000, indicating the

number of different years for which there is information. Next follow
n lines. The ith of these contains two integers −109 ≤ yi ≤ 109 and
1 ≤ ri ≤ 109 indicating that there was ri millilitres of rain during year yi
(note that the amount of rain during a year can be any nonnegative integer,
the limitation on ri is just a limitation on the input). You may assume that
yi < yi+1 for 1 ≤ i < n.

The second part of a test case starts with an integer 1 ≤ m ≤ 10000,
indicating the number of queries to process. The following m lines each
contain two integers −109 ≤ Y < X ≤ 109 indicating two years.

There is a blank line between test cases. The input is terminated by a
case where n = 0 and m = 0. This case should not be processed.

Technical note: Due to the size of the input, the use of cin/cout in C++
might be too slow in this problem. Use scanf/printf instead. In Java, make
sure that both input and output is buffered.

Output specifications

There should be m lines of output for each test case, corresponding to the
m queries. Queries should be answered with “true” if the statement is
true, “maybe” if the statement might be true, and “false” if the statement
is false.

Separate the output of two different test cases by a blank line.

Sample input

4

2002 4920

2003 5901

2004 2832

2005 3890

2

2002 2005

2003 2005

3

1985 5782

1995 3048

2005 4890

2

1985 2005

2005 2015

16

0

0

Output for sample input

false

true

maybe

maybe

17

18

Problem G

Kingdom

King Kong is the feared but fair
ruler of Transylvania. The king-
dom consists of two cities and
N < 150 towns, with nonin-
tersecting roads between some of
them. The roads are bidirectional,
and it takes the same amount of
time to travel them in both direc-
tions. Kong has G < 353535 sol-
diers.

Due to increased smuggling
of goat cheese between the two
cities, Kong has to place his sol-
diers on some of the roads in such
a way that it is impossible to go from one city to the other without pass-
ing a soldier. The soldiers must not be placed inside a town, but may be
placed on a road, as close as Kong wishes, to any town. Any number of
soldiers may be placed on the same road. However, should any of the two
cities be attacked by a foreign army, the king must be able to move all his
soldiers fast to the attacked city. Help him place the soldiers in such a way
that this mobilizing time is minimized.

Note that the soldiers cannot be placed in any of the cities or towns.
The cities have ZIP-codes 95050 and 104729, whereas the towns have ZIP-
codes from 0 to N − 1. There will be at most one road between any given
pair of towns or cities.

Input specifications

The input contains several test cases. The first line of each test case is N, G
and E, where N and G are as defined above and E < 5000 is the number
of roads. Then follow E lines, each of which contains three integers: A and
B, the ZIP codes of the endpoints, and φ, the time required to travel the
road, φ < 1000. The last line of the input is a line containing a single 0.

Output specifications

For each test case in the input, print the best mobilizing time possible, with
one decimal. If the given number of soldiers is not enough to stop the goat
cheese, print “Impossible” instead.

19

Sample input

4 2 6

95050 0 1

0 1 2

1 104729 1

95050 2 1

2 3 3

3 104729 1

4 1 6

95050 0 1

0 1 2

1 104729 1

95050 2 1

2 3 3

3 104729 1

4 2 7

95050 0 1

0 1 2

1 104729 1

95050 2 1

2 3 3

3 104729 1

2 1 5

0

Output for sample input

2.5

Impossible

3.0

20

Problem H

Necklace Decomposition

The set of cyclic rotations of a string are
the strings obtained by embedding the
string clockwise on a ring, with the first
character following on the last, starting at
any character position and moving clock-
wise on the ring until the character pre-
ceeding the starting character is reached.
A string is a necklace if it is the lexico-
graphically smallest among all its cyclic
rotations. For instance, for the string 01011 the cyclic rotations are
(10110,01101,11010,10101,01011), and furthermore 01011 is the smallest
string and hence, a necklace.

Any string S can be written in a unique way as a concatenation S =
T1T2 . . . Tk of necklaces Ti such that Ti+1 < Ti for all i = 1, . . . , k− 1, and
TiTi+1 is not a necklace for any i = 1, . . . , k − 1. This representation is
called the necklace decomposition of the string S, and your task is to find
it.

The relation < on two strings is the lexicographical order and has the
usual interpretation: A < B if A is a proper prefix of B or if A is equal to
B in the first j− 1 positions but smaller in the jth position for some j. For
instance, 001 < 0010 and 1101011 < 1101100.

Input specifications

On the first line of the input is a single positive integer n, telling the
number of test scenarios to follow. Each scenario consists of one line
containing a non-empty string of zeros and ones of length at most 100.

Output specifications

For each scenario, output one line containing the necklace decomposition
of the string. The necklaces should be written as ’(’ necklace ’)’.

Sample input

5

0

0101

0001

21

0010

11101111011

Output for sample input

(0)

(0101)

(0001)

(001)(0)

(111)(01111)(011)

22

Problem I

Playground

George has K ≤ 20 steel wires
shaped in the form of half-circles,
with radii a1, a2, . . . , aK. They
can be soldered (connected) at the
ends, in any angle. Is it possible
for George to make a closed shape
out of these wires? He does not
have to use all the wires.

The wires can be combined at
any angle, but may not intersect.
Beware of floating point errors.

Input specifications

Each data set consists of a number 0 < K ≤ 20 on a line by itself, followed
by a line of K space-separated numbers ai. Each number is in the range
0 < ai < 107, and has at most 3 digits after the decimal point.

The input will be terminated by a zero on a line by itself.

Output specifications

For each test case, there should be one word on a line by itself; “YES” if
it is possible to make a simple connected figure out of the given arcs, and
“NO” if it isn’t.

Sample input

1

4.000

2

1.000 1.000

3

1.455 2.958 4.424

7

1.230 2.577 3.411 2.968 5.301 4.398 6.777

0

23

Output for sample input

NO

YES

NO

YES

24

